
E
G

O
S

! P
D

F
 M

V
C

 C
on

te
nt

 A
pp

lic
at

io
n

F
ra

m
ew

or
k

v9
.2

51
2.

11
.1

. ©
20

26
 E

G
O

S
! T

he
 E

du
ca

tio
n

C
om

pa
ny

, A
lle

 R
ec

ht
e

vo
rb

eh
al

te
n.

 C
re

at
ed

 o
n

03
.0

2.
20

26
 0

3:
25

:4
8.

 ID
97

89
. A

ng
ul

ar
 A

dv
an

ce
d

S
in

gl
e

P
ag

e
A

pp
lic

at
io

n
D

ev
el

op
m

en
t

>> Angular
Advanced Single Page Application Development

Angular ist ein TypeScript-basiertes Front-End-Webapplikationsframework. Es wird von einer
Community aus Einzelpersonen und Unternehmen, angeführt durch Google, entwickelt und als Open-
Source-Software publiziert.

Ihr Nutzen

In diesem Seminar lernen Sie, wie sich mit Angular große und robuste
Unternehmensanwendungen entwickeln lassen. Basierend auf einem
vollständigen Projekt und vielen Beispielen werden zahlreiche
Architekturansätze und Best Practices diskuiert. Am Ende liegt eine
Vorlage für Ihre eigenen Projekte

Voraussetzungen

Angular Basic~9757

oder dem entsprechende Kenntnisse

Hinweise

Version: 2019

Preis pro Teilnehmer

EUR 2450,- exklusive der gesetzlichen MwSt.

Seminardauer

4 Tag(e)/Day(s)

Seminarinhalte

Tag 1
* Standalone Components: Concepts & Migration
- Standalone Components vs Modules
- Creation, Bootstrapping
- Registering Providers & Dependency Injection
- Routing & Lazy Loading
- Migration to Standalone Components

* Components & Forms Deep Dive
- Using & Migrating to Control Flow Syntax
- Deferred Loading
- Standalone Directives & Directives Composition Api
- Components and Required Inputs
- Content Projection
- Templates TemplateRef, *ngTemplateOutlet
- Comparison: ng-template vs ng-content - pro / cons
- ViewChild, -Children, ContentChild, -Children
- HostBinding & HostListener
- Recap Reactive Forms Revisited (FormGroup, Form Builder,
FormControl, FormArray)
- Dynamic Component Loading & DataBinding
- Untyped Forms vs Typed Forms
- Typed Forms Nullability, NonNullableFormBuilder, GetRawValue
- Partial Values, Optional Controls, Dynamic Groups and FormRecord
- Cascading Form Controls
- Implementing Custom Controls using ControlValueAccessor
- Typed Forms Validation & Custom Validators
- Handling FormErrors & ErrorStateMatcher

* Mastering Reactive Programming using RxJS
- Imperative vs Functional Programming
- Immutability & Pure Functions
- Introduction to RxJS
- Observables, Observers & Use Cases
- Data- vs Action-Streams
- Mouse & DOM Events as Observables
- Implementing Side Effects using tap
- Base Operators: Mapping, Filtering, Merging, Scanning, ...
- Unsubscribing (takeUntil, DestroyRef, takeUntilDestroyed)
- Introduction to Signals
- Imperative vs Declarative Reactive Programming
- Signals vs Observables: Synchronous & Asynchronous Reactive
Programming
- Understanding Marble Diagrams & Debugging Observables
- Marble-testing RxJS

- Combination & Transformation Operators
- Retry & Error Handling Strategies
- Implementing & Testing Custom Observable Operators
- Communication between using Event Bus Pattern
- Stateful Services using Behavior Subjects and Signals

Tag 2
* Advanced State Management using NgRx
- Overview State Management Patterns
- Introduction to the Redux Pattern & NgRx
- Feature State and ActionReducerMap
- Implementing NgRx Store, Reducers & Selectors using createFeature
- Actions & createActionGroup
- Debugging NgRx using Redux Dev Tools
- Effects, Facades, @ngrx/entity adapters
- Simplifying Data Access with @ngrx/data
- Implementing a reactive View Model
- NgRx Container Presenter Best Practices
- Using @ngrx/component-store
- Optimize Change Detection

* Mastering Signals
- Introduction to Signals (Writable, Computed, Effects)
- Working with Arrays
- Signals vs Observables: Synchronous & Asynchronous Reactive
Programming
- Signals & Ngrx Interoperability
- Creating a Signals Store using @ngrx/signals
- Local Change Detection using Signals

* Advanced Routing and App Initialization
- Dependency Injection in Depth: Resolution modifiers and Dependency
providers
- Using Constructor vs inject for DI
- APP_INITIALIZER, Injection & forwardRef
- Implementing Global Error Handling and Retry-Patterns
- Modules & Code Splitting
- Introduction to @ngrx/router-store
- Routing using NgRx Actions
- Binding Router-Params to Component Inputs
- Functional Route Guards & Interceptors
- View Transition Api
- Auxiliary Routes: Common use cases
- Preloading Component Data from NgRx using Functional Resolvers
- Using Preloading Strategies
- Router Animations & Anchor Scrolling
- Introduction to Visual Feedback (Loading-, Saving-, ...-Indicator)

Tag 3
* Securing Angular using Cloud Identities
- Recap Jwt, OAuth 2.0 & OpenID Connect
- Token based Authentication in Angular with NgRx
- Implementing an AuthModule using a Facade Service, Components,
Guards & Interceptors
- Optimizing Application Flow for Authentication
- Authentication using Microsoft Entra ID
- Advanced Testing with Jest, Cypress and NgRx
- Introduction Angular Testing Tools (Jasmine, Karma, Jest & Cypress)
- Testing Classes, Pipes, Directives
- Testing Services using HttpClientTestingModule &
HttpTestingController
- Mocking vs Spies
- Testing Component Interaction (Read, Write, Emit, Inputs)
- Complex Forms Testing
- Testing Observables & BehaviourSubjects
- Material Testing using Component Harnesses
- Async Component Testing (done, fakeAsync, waitForAsync)
- Components Marble Testing
- Testing NgRx: Mock Store, Mock Selectors, Reducers, Effects, Facades
- Using Jest for Unit Testing (Setup, Changes in spec, Snapshot Tests)
- Introduction to End-2-End Testing using Cypress
- Cypress Component Tests

Tag 4
* Reusability with Libraries, Nx, Schematics & Angular Elements
- Angular Building Blocks: Workspace, Apps, Libraries
- Reusable Artifacts using Angular Libraries
- Implementing, Publishing and Consuming Libraries to / from GitHub
Packages
- Introduction to Nx Workspaces
- Understanding and Implementing Schematics
- Implementing Web Components using Angular Elements and
Standalone Components
- Implementing a Real Time connected Micro-Frontend as a Progressive
Web App
- Introduction to Micro-Frontend and Event Driven Architecture (EDA)
- Implementing a Real Time connected Micro-Frontend listening to
Cloud Events
- Introduction to Progressive Web Apps
- Understanding and Configuring Service Workers & Manifests
- Installing & Updating Progressive Web Apps
- Introduction to Module Federation

* Building & Optimizing Applications
- Using Chrome Dev Tools & Lighthouse for Performance Optimization
- Analyzing and Optimizing Bundles & Modules
- Deferred Loading
- Understanding & Using Page Traces
- Optimizing Images using NgOptimizedImage
- Logging NgRx to custom destinations using Meta-Reducers
- Virtual- & Infinite Scrolling
- Understanding, Profiling & Optimizing Angular Change Detection
- Using Linting and Autoformat with Prettier
- Accessibility A11y: Best Practices & Linting
- Introduction to Server Side Rendering (SSR) and Non-destructive
hydration
- Configure Server Side Rendering & Pre-rendering

Unsere BildungsberaterInnen stehen Ihnen gerne zur Verfügung. Innsbruck +43 (0)512 36 47 77.
© 2026 EGOS! The Education Company, Alle Rechte vorbehalten.

Irrtümer und Druckfehler vorbehalten. SeiteLernen und Entwickeln www.egos.co.at

